

A Final Year Project Report on

Fabrication & Simulation of VTOL based UAV swarms
for Disaster Relief, Military and Commercial

Applications

Submitted in Partial Fulfilment of the Requirements for the Award of Degree of

Bachelor of Technology

In

Mechanical Engineering

Submitted by

Under the supervision of

Anshul Awasthi
2016UME1274

Devnath S. Nair
2016UME1015

Nimesh Khandelwal
2016UME1270

Dr. Dinesh Kumar
Associate Professor

Department of Mechanical Engineering
MNIT, Jaipur

Department of Mechanical Engineering
Malaviya National Institute of Technology, Jaipur

May 2020

DEPARTMENT OF MECHANICAL ENGINEERING

MALAVIAYA NATIONAL INSTITUTE OF TECHNOLOGY,
JAIPUR (RAJASTHAN)-302017

DECLARATION

We declare that the training report titled “Fabrication & Simulation of VTOL based UAV

swarms for Disaster Relief, Military and Commercial Applications” being submitted by us

in partial fulfilment of the degree of B.Tech. (Mechanical Engineering) is a project

work carried out by us under the supervision of Dr. Dinesh Kumar, Associate

Professor, Department of Mechanical Engineering of Malaviya National Institute of

Technology and the contents of this Project work, in full or in parts, have not been

submitted to any other institute or University for the award of any certificate or

diploma. We also certify that no part of this project work has been copied or borrowed

from anyone else. In case any type of plagiarism is found out, we will be solely and

completely responsible for it.

Date:

Place:

Anshul Awasthi
2016UME1274

Devnath S. Nair
2016UME1015

Nimesh Khandelwal
2016UME1270

DEPARTMENT OF MECHANICAL ENGINEERING
MALAVIAYA NATIONAL INSTITUTE OF TECHNOLOGY,

JAIPUR (RAJASTHAN)-302017

CERTIFICATE

This is to certify that report titled “Fabrication & Simulation of VTOL based UAV swarms

for Disaster Relief, Military and Commercial Applications” that is being submitted by

Anshul Awasthi (2016UME1274), Devnath S. Nair (2016UME1015) and

Nimesh Khandelwal (2016UME1270) in partial fulfilment of the degree of

Bachelor of Technology, (Mechanical Engineering) submitted to the Mechanical

Engineering Department, Malaviya National Institute of Technology, Jaipur, is

found to be satisfactory and is hereby approved for submission.

Date:

Place:

Dr. Dinesh Kumar
Associate Professor
Department of Mechanical Engineering
MNIT, Jaipur

Acknowledgements

Projects are essential to gain the practical exposure which otherwise, is not possible when

studying about the theory in classrooms. This research experience has taught us immensely,

but without the support of the faculty members of the Department of Mechanical Engineering,

Malaviya National Institute of Technology, this would not have been possible.

It has been a wonderful and a very informative experience while doing this project. However,

this would not have been so without the aid of the experienced professionals and many greatly

talented people. Thus, it gives us immense pleasure to thank the people whose contributions

and help in this project saved a lot of time and effort and taught us a great deal about the

subject.

Foremost, we would like to thank Dr. Dinesh Kumar for giving us the opportunity to work on

the project and for providing constant motivation, support and help while we carried out this

project. Without his efforts, this project would not have reached the level it has.

We would also like to extend our sincere thanks to various developers that have developed

various tools that were used in this project. Without their help and guidance on how to solve

various problems and roadblocks we encountered while doing this project, we would possibly

have been stuck or the project would have not made this much progress in the given time.

Lastly, it is never without our parents, who shower their unconditional love on us, we could

have completed our project during this period.

Authors:

i

Anshul Awasthi
2016UME1274

Devnath S. Nair
2016UME1015

Nimesh Khandelwal
2016UME1270

Abstract

In this project report, we present the design, analysis and 3D simulation model of a dual-

rotor tailsitter VTOL UAV. The VTOL UAV combines the advantages of a multirotor, having

vertical takeoff and landing characteristics as well as hovering stability at a stationary point,

with that of a fixed wing UAV, having efficient level flight and payload capacity with much

lesser power consumption. We will discuss the evolution and use of VTOL UAV systems for

military as well as commercial purposes followed by discussion of its mechanical CAD design

and the methodologies used for that. Following sections detail the structural and

aerodynamic analysis of various parts of the UAV. A new motor mount design has been

analyzed in that section that acts as a fuse in case of a crash. The last section describes the

approach and methodology used to setup a Gazebo simulation model of the vehicle, with a

discussion of the aerodynamic forces acting on the vehicle. The simulation can be used as a

test bed for various type of algorithmic testing.

ii

Contents

Certificate

Declaration

Acknowledgements….………………………………………………………………………………………………i

Abstract.………...ii

List of Figures…………………………………………………………………………………………………...…. v

List of Tables………………………………………………………………………………………………….…….vi

1. Chapter 1 – Introduction to VTOL UAVs…..…………..…………………………1

1.1. Introduction……………………………….……………………………………………1

1.2. Classification of VTOL UAVs………………………………………...………...…...2

1.3. Project Aim………………………………..……………………..……………………..3

2. Chapter 2 - Mechanical Design.………………………….…………….….………...4

2.1. Design Methodology…………………………………………………………………4

2.1.1. Material Selection……………………………………………………………...5

2.1.2. SolidWorks Model……………………………………………………………...7

2.2. Fabrication and Assembly………………………………………………….…..…..7

2.2.1. Wing Fabrication……………………………………………………………….7

2.3. GPS Orientation Stabilization……………………………………………………..8

2.4. Result……………………………………………………….……………………..…..8

3. Chapter 3 - Mechanical and Flow Analysis……...…….…………………...…....9

3.1. Introduction…………………………………………………………………………..9

3.2. The Black Box…...…………………………………………………………………...10

3.3. Discussion on Aim #1.………………………………………………………………11

3.3.1. Mission Statement……………………………………………………………11

3.3.2. Meshing………………………………………………………………………...11

3.3.3. Normal Stress and Total Deformation Analysis…………………………13

3.3.4. Diameter Range for Design…………………………………………………16

3.4. Discussion on Aim #2………………………….…………………………………..18

3.4.1. Mission Statement…………………………………………………………...18

3.4.2. Meshing……………………...………..……………………………………….18

iii

3.4.3. Flow Analysis by ANSYS Fluent……………………………………………..20

3.4.4. Results from Flow Analysis……………………………………………………23

3.5. Conclusions…………………………………………………………………………….24

3.5.1. Aim #1………………………………………………………………………….....24

3.5.2. Aim #2…………………………………………………………………………….24

4. Chapter 4 - 3D Simulation Modelling and Testing ……...……………….…..…25

4.1 Introduction to Simulation………………..…………………………………………...25

4.2 Unmanned Aerial Vehicle (UAV) Simulation…..…………………………………..26

4.3 Different approaches to simulating UAVs…..………………………………………26

4.4 Achieving actuator control via ROS………………………………………………….27

4.5 Aerodynamic Forces on the Vehicle….………………………………………………29

4.6 Calculation of Aerodynamic Forces…..……………………………………………...29

4.6.1 Propulsive Forces…………………………………………………………………29

4.6.2 Aerodynamic Forces due to motion…………………………………………….33

 4.7 Further Development Plans………………………………………………..……...35

5. Chapter 5 Conclusion and discussions……………………………………………..36

6. Appendix A………………………………………………………………………………….38

7. Appendix B………………………………………………………………………………….40

8. Appendix C………………………………………………………………………………....46

References………………………………………………………………………………………56

 iv

List of Figures

 v

Figure Caption Page

1.1 Tiltrotor VTOL UAV 2

1.2 Multirotor VTOL UAV 2

1.3 Hybrid VTOL UAV 2

2.1 High Level MAV Architecture 4

2.2 Eppler E-168 Aerofoil Data 5

2.3 Designed Wing and Elevon profile 5

2.4 3D printed Motor Mount 6

2.5 Aluminium Reinforcement Spar design 6

2.6 Different Views of the MCAD model 7

2.7 Wing Fabrication 7

3.1 Behind the BLACK BOX 10

3.2 Motor Mount Multizone Meshing 12

3.3 Mesh Nodes and Elements 12

3.4 Skewness Plot 13

3.5 Skewness Quality 13

3.6 Varying Thrust Force 14

3.7 Normal Stress Variation 15

3.8 Total Strain Deformation 15

3.9 Motor Mount Analogy with Rod 16

3.10 Orthogonal Mesh Quality Check 19

3.11 Orthogonal & Skewness Quality 19

3.12 Contour of Static Pressure on an Aerofoil 20

3.13 Scaled Residual Plot 21

3.14 Coefficient of Drag Plot 22

3.15 Coefficient of Lift Plot 22

3.16 Force Results in X-Direction 23

3.17 Force Results in Y-Direction 23

3.18 Force Results in Z-Direction 23

4.1 Flow chart showing actuator control routine 28

 4.2

Comparison of BET predicted Thrust values and experimental values as in
manufacturer datasheet 31

file:///C:/Users/karsh/Desktop/Training%20Seminar/Reports(all%20revisions)/Report_27_08_Revision%204.docx%23_Toc460935320
file:///C:/Users/karsh/Desktop/Training%20Seminar/Reports(all%20revisions)/Report_27_08_Revision%204.docx%23_Toc460935322
file:///C:/Users/karsh/Desktop/Training%20Seminar/Reports(all%20revisions)/Report_27_08_Revision%204.docx%23_Toc460935331
file:///C:/Users/karsh/Desktop/Training%20Seminar/Reports(all%20revisions)/Report_27_08_Revision%204.docx%23_Toc460935340

List of Tables

Table Caption Page

1.1 Different types of VTOL UAVs 2

vi

CHAPTER 1 Introduction to VTOL UAVs

1.1 Introduction

Unmanned Aerial Vehicles (UAV) are aircrafts which are controlled remotely

via direct radio frequency communication or are equipped with autonomous devices

to perform autonomous mission flights. The active development in the field of UAV

in recent years has led to its increase in versatility in terms of its functionality and

range of application.

Early UAV development is generally divided into two separate types, Fixed

Wing UAV (FWUAV), and Rotorcraft UAV (RUAV). FWUAVs typically have longer

endurance and thus can reach further than RUAV in a single flight, but require

runways for take-offs and landings. RUAVs on the other hand, are more

manoeuvrable and able to take-off and land vertically without any runway but has

much lesser endurance due to their low efficiency in power consumption and low

speed.

Therefore, to bridge the performance gap between RUAVs and FWUAVs, the

solution is to have a hybrid Vertical-Take-Off-Landing (VTOL) aircraft. This type of

aircraft will have the advantages of both FWUAV and RUAV and to a substantial

extent should be able to eliminate their shortcomings.

In the aviation industry, major companies have already successfully mass-

produced and commercialized numerous models of VTOL aircraft. To name a few:

• Bell Boeing V-22 Osprey (tilt rotor mechanism)

• Quantum Systems Trinity F90+

• Quantum Systems Tron F9 (electric-VTOL)

• ALTI’s fleet of VTOL UAVs (Ascend, Transition, Reach)

• PD-1 Pro VTOL by UKR-SPEC systems

There are many more aviation companies investing heavily in VTOL aircrafts due to

their dynamic nature and easy maneuverability. In academia also, these UAV

systems are being researched due to their immense potential.

1

Currently, the major issue that the researchers are facing is to figure out an efficient

transition maneuver for the transition from the multirotor mode to fixed wing mode

during the flight.

1.2 Classification of VTOL UAVs

On the basis of their design and propulsion mechanism, the common VTOL UAVs can

be classified into three types:

Table 1.1 Different types of VTOL UAVs

TYPE 1 TYPE 2 TYPE 3

These are fixed wing

aircraft with tilting rotor

mechanism.

They have no wings and

have fixed vertical

rotor(s)

They have wings as well

as vertical rotor(s)

Each of these designs has its own complexity, with the TYPE1 being most complex

than others. Moreover, due to the difficulty in optimizing the transition flight from

vertical to horizontal flight and vice versa, the VTOL UAV may lose its balance during

the transition process and can lose a lot of altitudes. Therefore, it is vital to design

the VTOL UAV that is lightweight, able to perform transition flight safely and also

relatively simple yet efficient propulsion system.

2

Figure 1.1 Tiltrotor VTOL UAV Figure 1.2 Multirotor VTOL UAV Figure 1.3 Hybrid VTOL UAV

1.3 Project Aim

The aim of this project is to design and develop an autonomous dual-rotor tailsitter

VTOL UAV system that is capable of surveying, payload dropping, and

reconnaissance. The key outcomes of this project are:

• Development of a Mechanical CAD (MCAD) model keeping in mind the results

of the other VTOL UAVs already available in the market and the different

projects being carried out at various universities.

• Stress and flow analysis on the motor mounts and wings of the vehicle

respectively, the results from which will be used to calculate suitable design

constraint for both.

• A 3D simulation model will be developed for the same MCAD model to be used

with the Gazebo simulator., that can be used to test various algorithms before

implementing them on the real-world model. It could also be used as a test bed

for testing various control, path planning, and swarm algorithms for the

developed platform.

This report details our original work done for achieving the outcomes of the project.

3

CHAPTER 2 Mechanical CAD Design of VTOL

Mechanical design means the design of components and systems of a mechanical

nature—machines, products, structures, devices and instruments. For the most part

mechanical design uses mathematics, materials, and the engineering-mechanics

sciences.

2.1 Design Methodology:

 In any mechanical design process, a higher-level block diagram is the first step,

followed by the detailed design of the components. For our UAV, the MAV

architecture is given in the below figure:

Figure 2.1 High Level MAV Architecture

 4

The most important and critical aspect of any fixed wing aircraft is the aerofoil that

it used. For that, we used an open source software called OpenVSP. The Eppler-168

(Figure 2.2) design was found to be suitable for our purposes as it is a symmetrical

aerofoil and this can be modelled and debugged easily in the initial phases.

Figure 2.2 Eppler E-168 Aerofoil data

During the designing phase, the chosen aerofoil shape was integrated in the wings as

well as the elevons to maintain the shape of the aerofoil over the entire air flow region.

The SolidWorks design of the aerofoil is given in Figure 2.3

Figure 2.3 Designed Wing and Elevon profile

2.1.1 Material Selection:

 For wings, we chose to use XPS (Polystyrene sheets) as they have a very high

toughness and are very light as compared to other materials used in DIT, hobbyist

5

aeromodelling (Coroplast, etc.). The landing gear and motor mounts were made of

PLA and were 3D printed in house to save the cost. The material selection here was

due to the fact that these are the intended failure areas in the vehicle in the event of

a crash. Therefore, being able to print these parts in house gives us the flexibility to

test the vehicle to it’s limit where it might even crash. The suitable working range of

values for the motor mount has been discussed and calculated in the next chapter.

Figure 2.4 3D printed Motor Mount

 For frame reinforcement, thin (10mm dia) aluminium tubes were used as spars

to provide structural stability to the frame.

Figure 2.5 Aluminium Reinforcement Spar design

The materials are chosen to make the vehicle as light weight as possible while having

acceptable working strength.

6

2.1.2 SolidWorks Model:

 For CAD modelling of the vehicle, SolidWorks was chosen as it is the industry

standard in the mechanical design industry. The different views of the developed

model are shown in figure.

Figure 2.6 Different Views of the MCAD model

2.2 Fabrication and assembly:

2.2.1 Wing Fabrication:

 Since XPS is a brittle material, it cannot be machined or cut using conventional

cutting tools. For this, a hot wire cutter (Figure) was made and used. The resulting

wing profile was found to be acceptable and was covered with coroplast sheets to

compensate for the rough surface of the XPS to reduce turbulence drag over the wing.

Figure 2.7 Wing Fabrication

7

2.3 GPS orientation stabilizer:

 Since we will be using GPS for position data of our model, it is crucial to

keep the GPS flat all the time to ensure proper reception of the satellite signal by the

patch antennae of GPS module. For this, an auto-stabilizer was developed that keeps

the GPS flat irrespective of the pitch of the vehicle. Since pitch is the maneuver that

the vehicle will do mostly, only one direction control was sufficient.

 To filter out the high frequency noise due to vibrations of the vehicle a

low pass filter was applied to the IMU data of the GPS stabilizer. This greatly helped

stabilize as well as smoothen the motion of the stabilizer.

2.4 Result:

 The MCAD model was made using SolidWorks. The part files were

exported in different formats to be used for analysis as well as for development of the

simulation model. Fabrication of the First prototype of the vehicle had been

completed before March, 2020.

8

CHAPTER 3 MECHANICAL & FLOW ANALYSIS

Aim #1

To perform normal stress and total deformation analysis of motor mounts made up of PLA

using ANSYS MECHANICAL & subsequently finding out the range of diameters for

designing the neck of motor mount.

Aim #2

To perform flow analysis of the aerofoil using ANSYS FLUENT & consequently finding out

the drag and lift forces on the aerofoil.

3.1 Introduction

 The Ansys Workbench platform is the framework upon which the industry’s

broadest and deepest suite of advanced engineering simulation technology is built.

An innovative project schematic view ties together the entire simulation process,

guiding the user through even complex Multiphysics analysis with drag-and-drop

simplicity. With bi-directional CAD connectivity, an automated project level update

mechanism, pervasive parameter management and integrated optimization tools, the

Ansys Workbench Platform delivers unprecedented productivity, enabling simulation

driven product development.

Ansys Mechanical Enterprise is the flagship mechanical engineering software

solution that uses finite element analysis (FEA) for structural analysis using the

Ansys Mechanical interface. It covers an enormous range of applications and comes

complete with everything you need from geometry preparation to optimization and

all the steps in between. With Mechanical Enterprise you can model advanced

materials, complex environmental loadings and industry-specific requirements in

areas such as offshore hydrodynamics and layered composite materials.

9

Fluent software contains the broad, physical modelling capabilities needed to model flow,

turbulence, heat transfer and reactions for industrial applications. These range from air flow

over an aircraft wing to combustion in a furnace, from bubble columns to oil platforms, from

blood flow to semiconductor manufacturing and from clean room design to wastewater

treatment plants. Fluent spans an expansive range, including special models, with

capabilities to model in-cylinder combustion, aero-acoustics, turbomachinery and

multiphase systems.

3.2 The Black Box

A certain set of steps are followed in Ansys Workbench platform:

1. Pre-Analysis

2. Geometry

3. Mesh

4. Model Setup

5. Numerical Solution

6. Numerical Results

7. Verification & Validation

The following flow chart tells that what happens under the Black Box:

10

Figure 3.1 Behind the BLACK BOX

3.3 Discussion on Aim #1

3.3.1 Mission Statement

“To perform normal stress and total deformation analysis of motor mounts made up of PLA

using ANSYS MECHANICAL & subsequently finding out the range of diameters for

designing the neck of motor mount.”

The key targets of this part included:

• Performing Normal Stress Analysis

• Performing Total Deformation Analysis

• Finding the minimum diameter of the neck of motor mount with the

help of maximum normal stress value obtained from stress analysis

• Finding the maximum diameter of the neck of motor mount (PLA

Material) by considering the breakage of motor mount before the

wings (XPS Material) break during a crash.

3.3.2 Meshing

Meshing is an integral part of the computer-aided engineering simulation process.

The mesh influences the accuracy, convergence and speed of the solution. Once the

best design is found, meshing technologies from ANSYS provide the flexibility to

produce meshes that range in complexity from pure hex to highly detailed hybrid; a

user can put the right mesh in the right place and ensure that a simulation will

accurately validate the physical model.

Meshing methods available in Ansys are:

1. Automatic Meshing Method - If we select the automatic method control, the body

will be swept if possible. Otherwise, Tetrahedrons (Patch Conforming) is used.

2. Tetrahedrite/Hybrid Meshing Method - where an all tetrahedral mesh is created.

3. Hex Dominant Meshing Method - where a free hex dominant mesh is created. This

option is recommended for bodies that cannot be swept.

11

4. Sweep Meshing Method - A sweep mesh is forced on “sweepable” bodies (including

axis-sweepable bodies, which are not displayed when you use the show sweepable

bodies feature).

5. Multizone Meshing Method – It automatically generates a pure hexahedral mesh

where possible and then fills the more difficult to capture regions with unstructured

mesh. The Multizone has capabilities that make it more suitable for a class of

problems for which the Sweep method would not work without extensive geometry

decomposition.

Meshing of Motor Mount:

Multizone Mesh Method is used for the motor mount that is able to fill the whole

volume with hexahedral elements (Hex20) which are more efficient for the same level

of accuracy. The following photo shows the meshed motor mount:

This component has in total 15687 nodes and 3234 elements.

12

Figure 3.2 Motor Mount Multizone Meshing

Figure 3.3 Mesh Nodes and Elements

Another factor comes into picture that’s very important to note is the Skewness of the

meshing. Skewness is defined as the difference between the shape of the cell and the

shape of an equilateral cell of equivalent volume. Highly skewed cells can decrease

accuracy and destabilize the solution.

The table below lists the range of skewness values and corresponding cell quality:

3.3.3 Normal Stress and Total Deformation Analysis

The five forces that act on the blades of an aircraft propeller in motion, they are:

1. Thrust bending force: Thrust loads on the blades act to bend them forward.

13

Figure 3.4 Skewness Plot

Figure 3.5 Skewness Quality

2. Centrifugal twisting force: Acts to twist the blades to a low, or fine pitch angle.

3. Aerodynamic twisting force: as the centre of pressure of a propeller blade is

forward of its centreline the blade is twisted towards a coarse pitch position.

4. Centrifugal force: the force felt by the blades acting to pull them away from the

hub when turning.

5. Torque bending force: Air resistance acting against the blades, combined with

inertial effects causes propeller blades to bend away from the direction of rotation.

The above forces lead to reaction forces on the motor mount. Out of all these, Thrust

Bending Force leads to the maximum bending moment impact on the motor mount.

MATLAB Coding was used here for the extraction of values of Thrust Forces and

Resisting Torques at varying values of Coefficient of Drag & Coefficient of Lift with

varying motor speed. This varying thrust force is hence used in normal stress

analysis & tabulated in Ansys as follows:

(Reference - Appendix A: MATLAB code for BET calculations)

After conducting the normal stress analysis, the conclusion is made that the motor
mount which we have designed could bear the maximum stress without any trouble
because maximum stress value comes out to be lesser than the Yield Strength of
PLA. The following is the photo showing stress results:

From results obtained,

Maximum stress = 8.5716 MPa

Maximum strain = 3.0864e-04

Yield Strength of PLA = 35.9 MPa

Since, from above: Maximum Stress (8.5716 MPa) < Y.S. (35.9 MPa)

Hence, our design is valid according to stress considerations.

14

Figure 3.6 Varying Thrust Force

And from Total Deformation Analysis, we can conclude that the maximum

deformation value (normal strain) comes out to be lesser than that obtained when the

motor mount is subjected to maximum normal stress value.

From results obtained,

Young’s Modulus of PLA = 2.3 GPa

Maximum Stress obtained above = 8.5716 MPa

Therefore corresponding deformation (strain) = (Maximum Stress/Young’s Modulus)

Theoretical Strain = ((8.5716e+06) / (2.3e+09)) = 3.7267e-03

Since the maximum strain obtained is less than strain corresponding to max. stress

That is, Maximum Strain (3.0864e-04) < Theoretical Strain (3.7267e-03)

Hence, our design is also valid according to strain considerations.

15

Figure 3.7 Normal Stress Variation

Figure 3.8 Total Strain Deformation

3.3.4 Diameter Range for Design

 Finding the minimum diameter of the neck of motor mount with the

help of maximum normal stress value obtained from stress analysis.

Maximum Stress obtained above = 8.5716 MPa

Maximum Thrust Force value = 47.402 N

Since Thrust Force is acting axially so,

Maximum Stress = (Max. Thrust Force / Cross-section Area)

Cross-section is circular so let’s suppose it as “Dmin”

Cross-section Area = (* (Dmin^2) / 4)

8.5716e+06 = (47.402 / Cross-section Area)

Dmin = {(4 * 47.402) / ((8.5716e+06) *)} ^ (0.5)

Therefore, Dmin = 2.6535 mm

 Finding the maximum diameter of the neck of motor mount (PLA

Material) by considering the breakage of motor mount before the

wings (XPS Material) break during a crash.

The problem is mainly possessing axial thrust loading and torsional loading

on a circular rod of diameter ‘Dmax’ as shown in the simplified figure below:

16

Dmax

Figure 3.9 Motor Mount Analogy with Rod

σ = (F*y/I) = (F*32/ (* (Dmax^3))) = (47.4029*32/ (* (Dmax^3)))

τ = (T*r/J) = (T*16/ (* (Dmax^3))) = (0.5238*16/ (* (Dmax^3)))

σ1 = (16/ (* (Dmax^3))) * (F + ((F^2) + (T^2)) ^ (0.5))

σ1 = (16/ (* (Dmax^3))) * (47.4029 + ((47.4029^2) + (0.5238^2)) ^ (0.5))

Therefore, σ1 = (482.8567 / (Dmax^3))

σ2 = (16/ (* (Dmax^3))) * (F - ((F^2) + (T^2)) ^ (0.5))

σ2 = (16/ (* (Dmax^3))) * (47.4029 - ((47.4029^2) + (0.5238^2)) ^ (0.5))

Therefore, σ2 = (-0.0148 / (Dmax^3))

Yield Point for XPS (σy) = 3300 MPa

According to Maximum Shear Stress Theory;

|σ1 – σ2| <= σy

| (482.8567 / (Dmax^3)) + (0.0148 / (Dmax^3)) | <= 3300e+06

Therefore, Dmax <= 5.269mm.

According to Von Mises Criteria;

{(σ1 – σ2) ^2 + (σ2 – σ3) ^2 + (σ3 – σ1) ^2}/2 <= σy^2

{(482.8715/(Dmax^3)) ^2 + (482.8567/(Dmax^3)) ^2 + (0.0148/(Dmax^3)) ^2}

<= (3300e+06) *2

 Therefore, Dmax <= 5.269mm.

Hence, the Diameter Range is given as:

Dmin <= d <= Dmax

2.6535mm <= d <= 5.269mm

17

3.4 Discussion on Aim #2

3.4.1 Mission Statement

“To perform flow analysis of the aerofoil using ANSYS FLUENT & consequently finding out

the drag and lift forces on the aerofoil.”

The key targets of this part included:

• Finding out the Lift Force on the aerofoil

• Finding out the Drag Force on the aerofoil

• Obtaining values and plotting graphs of Coeff. of Drag and Lift with

100 iterations

3.4.2 Meshing

Here, fine meshing is done which influences the accuracy, convergence and speed of
the simulation. Some Mesh Quality Metric such as orthogonality, skewness, aspect-
ratio are seen as conceptual means in the evaluation of mesh quality and its impact
on obtaining an accurate solution. A check on Orthogonality (A Mesh Quality Metric)
becomes necessary here.

Mesh Quality Metrics:

Orthogonality –
The concept of mesh orthogonality relates to how close the angles between adjacent
element faces (or adjacent element edges) are to some optimal angle (depending on
the relevant topology). The orthogonality measure ranges from 0 (bad) to 1 (good).

Skewness -
Skewness in tetrahedral elements is best captured by the deviation from an optimal
(equilateral) volume.

Aspect ratio -
The aspect ratio metric would be defined as length to height ratio in 2D or as the
radius ratio of circumscribed to the inscribed circles in 3D (sometimes also the area
ratio.

18

From above orthogonal meshing style, it can be concluded that maximum number of

elements lie in the acceptable range. This can be concluded from the table below:

19

Figure 3.10 Orthogonal Mesh Quality Check

Figure 3.11 Orthogonal & Skewness Quality

3.4.3 Flow Analysis by Ansys Fluent

Assuming the properties of air at 1 atm and at a temperature 25 degree Celsius;

Density = 1.184 kg/m3

Coefficient of Viscosity = 1.849e-05 kg/m-s

Cruising Speed/ Maximum speed at which UAV could glide = 10 m/s

Chord Width = 0.256 m

Reynold’s Number (Rn)= (Density * Max. Speed * Chord Width)/ Coeff. of viscosity

Rn = (1.184 * 10 * 0.256 / (1.849e-05))

Therefore, Rn = 1,63,892

Hence, we can conclude that the flow is turbulent in nature.

Now after substituting all the given data and all the other properties in Ansys Fluent,

we obtain the following contour plot of Static Pressure over the wall of the aerofoil.

Contours of Static Pressure on the aerofoil is shown in snapshot below:

From the above snapshot, it can be observed that due to uniform air flow over the

surfaces of the aerofoil, the maximum static pressure is obtained at the stagnation

points, i.e. where air velocity becomes zero (RED REGION), negative pressure is

20

Figure 3.12 Contour of Static Pressure on an Aerofoil

 generated due to back flow of air (BLUE REGION) and remaining (GREEN

REGION) shows slight variations in static pressures over aerofoil surfaces.

Various Graph Plots with 100 iterations performed:

1. Scaled Residual Plot -

In a CFD Analysis, the residual measures the local imbalance of a conserved

variable in each control volume. In an iterative numerical solution, the residual will

 never be exactly zero, However, the lower the residual value is, the more

numerically accurate the solution.

The above graph represents variations in Continuity, velocity in X-direction,

velocity in Y-direction and velocity in Z-direction.

21

Figure 3.13 Scaled Residual Plot

2. Coefficient of Drag Plot –

From the above graph, it can be observed that with increase is the number of

iterations the value of drag coefficient decreases in an almost exponential manner.

3. Coefficient of Lift Plot –

From the above graph, it can be observed that with increase is the number of

iterations the value of lift coefficient first decreases then attains a minimum value

then starts increasing in an irregular manner.

22

Figure 3.14 Coefficient of Drag Plot

Figure 3.15 Coefficient of Lift Plot

3.4.4 Results from Flow Analysis

Force Calculations in X-Direction:

Force Calculations in Y-Direction:

Force Calculations in Z-Direction:

23

Figure 3.16 Force Results in X-Direction

Figure 3.17 Force Results in Y-Direction

Figure 3.18 Force Results in Z-Direction

From above results, it can be concluded that:

Drag Force = 0.0066998 N

Lift Force = 0.006409952 N

Therefore, observing the above values of drag and lift forces, it can be concluded

that their effects will be negligible as the length of the aerofoil is small.

3.5 Conclusions

3.5.1 Aim #1 –

• Maximum Stress (8.5716 MPa) < Y.S. (35.9 MPa) so our design is valid

according to stress considerations.

• Maximum Strain (3.0864e-04) < Theoretical Strain (3.7267e-03) hence,

our design is also valid according to strain considerations.

• Diameter Range: 2.6535mm <= D <= 5.269mm

3.5.2 Aim #2 –

• Drag Force = 0.0066998 N

• Lift Force = 0.006409952 N

• It is concluded that Lift and Drag force effects will be negligible as the

length of the aerofoil is small.

• Scaled Residuals of Continuity, X-Direction Velocity, Y-Direction

Velocity, Z-Direction Velocity increases in the starting, reaches a peak

then decreases with increase in the number of iterations.

• Lift coefficient first decreases then attains a minimum value then

starts increasing in an irregular manner.

• Drag coefficient decreases in an almost exponential manner.

24

CHAPTER 4 - 3D Simulation Modelling and testing

A 3D simulation model has been developed in order to test control algorithms before

implementing them on the prototype. A near accurate aerodynamics model of the

vehicle has been developed for this purpose. The developed 3D model and simulation

environment can now be used as a test bed for anyone who wants to research in the

field of dual-rotor VTOLs to implement and test various algorithms (Control, Path

Planning, etc.).

4.1 Introduction to Simulation

According to Wikipedia, “A simulation is an approximate imitation of the operation of

a process or system; that represents its operation over time”. Simulation is used in

many contexts, such as simulation of technology for performance tuning or

optimizing, safety engineering, testing, training, education, and video games.

A simulation model can be called a test model on which we can test our inputs for the

response without the need to engage real-world hardware. The real-world hardware

cannot be directly employed due to various reasons: it may not be accessible, it may

be dangerous or unacceptable to engage, it is being designed but not yet built, or it

may simply not exist!

For our project, we have built a real-world model but it is too dangerous for the model

and the operator both to run various tests that might cause it to become unstable and

crash. Using the simulation model, we can first form a near accurate understanding

of how the model is going to behave to a given input, rectifying the mistakes that

might be made along the way, and then test those inputs on the real-world model.

This approach is clearly both time and cost efficient as well as much safer than

directly using the real hardware.

25

4.2 Unmanned Aerial Vehicle (UAV) Simulation

UAV simulation involves artificially re-creating aircraft flight characteristics

and the environment in which it flies for design, or other purposes. It includes

replicating the equations that govern how aircraft fly, how they react to applications

of flight controls, the effects of other aircraft systems, and how the vehicle reacts to

external factors such as air density, turbulence, wind shear, cloud, precipitation, etc.

The current simulation model that has been developed comes under this category of

simulation, and is being used for testing different control schemes, swarm behavior,

path planning, SLAM, etc. There are numerous simulators in the market that can be

used for robotics as well as UAV specific simulations. Ex. UAV Simulator by

Quantum3D, VT MAK, Dynautics, Gazebo, etc. to name a few.

Out of the simulators mentioned above, we decided to use the Gazebo simulator as it

is an open source software and is being used by the academia for robotics for quite

some time now. Also, it can be used in conjunction with ROS (Robot Operating

System), a set of software libraries and tools that enable development and testing of

various robots.

The robot model is written in the SDF (Simulation Description Format) file format as

well as in URDF (Universal Robot Description Format). Both file formats can be used

with the simulator of our choice.

4.3 Different approaches to simulating UAVs

 For the simulation purpose, we broadly tried two different approaches. The

first one was to use the SITL (Software In The Loop) model of an already existing

flight control stack (like PixHawk, ArduCopter, etc.) with our model, and then use

some middleware framework (like MAVROS) to send high level commands to it via

ROS. The second approach includes writing a custom flight control stack along with

26

an aerodynamic response model of the vehicle. The former approach is clearly simpler

but the latter provides more flexibility as well as control over the behaviour of the

vehicle.

While testing the first approach, we used the PX4 SITL model and used MAVROS

framework to communicate with the SITL using ROS to send commands. While we

were able to get basic control of the model using the SITL approach, there were some

clear drawbacks in this approach.

• The higher-level control of the dual-rotor VTOL UAV had problems in the

autonomous mode, and autonomy of the vehicle is a basic requirement for the

future plans of this project.

• Getting individual actuator control should have been possible using the SITL

simulator, and there were different MAVROS topics too for this purpose, but

none of them worked for the dual-rotor VTOL.

Getting the actuator control was crucial for this project, as without that we could not

test custom control schemes on the developed platform.

To solve this issue, custom Gazebo Plugins were developed, written in C++, to access

individual actuator control and to apply appropriate aerodynamic forces on the

vehicle during the simulation. The code for both is given in Appendix B and C.

4.4 Achieving actuator control via ROS

 For controlling the actuators of a robot, ROS has a pre-built package called

ROS Control that contains libraries and tools for this purpose. It uses a

generic control loop feedback mechanism, typically a PID controller, to control the

output, typically effort, sent to your actuators. It has multiple available controller

plugins, out of which the controller plugin of our interest is the “effort_controllers”

plugin as we want the vehicle to experience the reaction forces when the inputs

change.

For testing this controller, the model was described in the URDF format. For the

elevons, “joint_position_controller” under the effort_controller class was used.

27

After appropriate PID tuning, the elevon actuators behaved properly as required. For

the rotors, “joint_velocity_controller” under the effort_controller class was used. This

did not work. Even after tuning the PID values of the controller, it did not respond to

the given inputs.

Since the ROS Control plugin did not work for the rotors, a custom actuator control

plugin was developed. The plugin reads the actuator input values from the user,

calculates the error, and applies the torque on the joint until error is reduced to 0.1%

of the input value. The PD control scheme was used for both the type of actuation

(Position for elevons and Velocity for rotors). The torque applied on the joint is

calculated as:

Figure 4.1 Flow chart showing actuator control routine

28

The values of Kp and Kd were found to be:

• Kp = 30.0 & Kd = 1.0 for the elevon joints

• Kp = 0.01 & Kd = 0.00001 for the rotor joints

The inputs for rotor are given in RPM by the user but they are converted to rad per

sec before calculating the error for the rotors. The inputs for elevons are given in

radians.

4.5 Aerodynamic forces on the vehicle

 Another important aspect of the simulation model is the application of forces

on the vehicle due to its motion as well as propulsive forces. A near accurate

aerodynamic model of the vehicle along with a plugin to apply those forces on the

vehicle was developed. The aerodynamic forces on the vehicle can be broadly

classified into two categories:

1. Propulsive Forces: The propulsive forces are the forces produced on the

vehicle due to the propulsion system of the vehicle. These include the thrust

forces on the rotors, resistive torque on the rotors, reaction forces on the

elevons due to deflection of the air stream coming from the propeller, and the

lift force on the wing (in case of asymmetrical airfoil wings).

2. Aerodynamic drag forces due to motion: These are the forces that the

vehicle experiences due to its motion in the fluid media (air). As the air strikes

the surface of the vehicle and gets deflected, there is a resultant drag force on

the vehicle body. These forces are produced due to both the translational as

well as the rotational motion of the vehicle.

4.6 Calculation of the Aerodynamic forces

4.6.1 Propulsive Forces:

For the calculation of the propulsive forces, we need to calculate the thrust force,

resistive torque on the rotor, downstream velocity of the air going through the

propeller, as well as the angle by which the stream gets deflected by the elevons.

29

For calculating the thrust and torque produced by the propeller, Blade Element

Theory (BET) was used. This includes discretizing the propeller blade into small

elements and then iteratively calculating the net thrust and torque produced by the

propeller of given specification going through each element. A MATLAB script

(Appendix A) was developed for this purpose. Using the script, the relationship

between the thrust/torque and the RPM of the propeller was established using a

quadratic polynomial fit. The fitted thrust(T)/torque(Q) and RPM relationship is

given by the equations:

T = (T2 * RPM^2 + T1 * RPM + T0)

Q = (Q2 * RPM^2 + Q1 * RPM + Q0)

here,

T2 = 1.2061e-07

T1 = -4.1556e-07

T0 = -1.9043e-06

Q2 = 1.3114e-09

Q1 = -2.18595e-10

Q0 = -2.3435e-08

The thrust also depends on the forward velocity of the propeller, and at a critical

velocity (Vcr) the net thrust produced by the propeller reduces to zero. This critical

velocity is calculated as:

Vcr = pitch * RPM / 60 (m/sec)

A separate MATLAB script was used to establish the thrust/torque and forward

velocity relationship and was found to be linearly decreasing. The velocity correction

factor (f) is then calculated as:

f = (1 – Vz / Vcr)

here,

 Vz: Forward velocity of the vehicle

 Vcr: Critical Velocity at given RPM

30

The final expression for the net thrust (Tnet) and net torque (Qnet) is then given as

Tnet = T * f = (T2 * RPM^2 + T1 * RPM + T0) * (1 – Vz / Vcr)
Qnet = Q * f = (Q2 * RPM^2 + Q1 * RPM + Q0) * (1 – Vz / Vcr)

To validate these equations, the experimental thrust values for a 5045BN propeller
(at Vz = 0) were used as reference. The graph comparing the thrust predicted by BET
and the experimental values of thrust for the given propeller is given below:

We can clearly see that the predicted thrust values are in excellent agreement with
the experimental values, thus, the formed equations are correct and can be used to
simulate thrust forces on our simulated model.

31

Figure 4.2 Comparison of BET predicted Thrust values and experimental values as in manufacturer datasheet

The forces on elevons due to deflection of the air stream is given by the equations:

FzR = -1 * rho * As * Vs^2 * sin(delta) * sin(delta)

FxR = -1 * rho * As * Vs^2 * sin(delta) * cos(delta)

Here,

 FzR: Force on elevon due to rotor air stream in the Z-direction

 FxR: Force on elevon due to rotor air stream in the X-direction

 rho: Density of air

 As: Area over which the air stream acts on the elevon

 Vs: Slipstream velocity of the air stream at the elevon

 delta: deflection angle of the elevon

The slipstream velocity (Vs) of the air flow is calculated as:

Vs = (Vz + Verr) * (1 + a)

Here,

 Vz: Forward velocity of the vehicle

 a: Axial infow factor for the propeller (depends on RPM)

 Verr: This is a fictional parameter taken as a correction term to simulate the

upstream velocity of the air flow even when the vehicle is at rest (chosen to be 0.1

m/sec).

The axial inflow factor depends on the rotation speed of the propeller (RPM) as well

as the forward velocity of the vehicle. This dependence of this factor on RPM was

calculated using the MATLAB script given in Appendix A and was found to be linear,

and was found to be inversely proportional to the forward velocity so the final fitted

polynomial equation for the axial inflow factor becomes:

a = a1 * RPM / (Vz + Verr) + a0

here,

 a1 and a0 are the fitted polynomial coefficients with values:

 a1 = 0.00286

 a0 = 2.9948

32

There is no lift on the wings as they are symmetrical in this case.

4.6.2 Aerodynamic Forces due to motion:

As the vehicle moves through air with some velocity, it deflects the air it comes in

contact with, that creates drag forces on the surface of the vehicle. These are broken

in two parts:

 1) Forces due to Translational Motion

 2) Forces due to Rotational Motion

1) Forces due to Translational Motion:

 The forces imparted on various surfaces of the vehicle can be generalized as

the movement of a flat plate through a fluid. The forces in any direction can be

calculated by change in momentum of the relative fluid flow as it strikes the surface

of the plate.

The force that the plate experiences is given by the equation:

Fi = -1 * rho * Ai * abs(Vi) * Vi

Here,

 Fi: Force in the i-direction (i= {x, y, z})

 rho: density of air

 Ai: Area of the surface

 Vi: Velocity of the vehicle in i-direction in the body frame of reference

The abs() function has been used here to incorporate the change in direction due to

change in the velocity direction directly without calculating the normal vector again.

For wings, Ai is given as:

 Ax = 2 * Awx

 Ay = Awy

 Az = 2 * Awz

Here,

 Awx: area of the surface that has x-axis as its normal (in body frame)

33

Awy: area of the surface that has x-axis as its normal (in body frame)

 Awy: area of the surface that has x-axis as its normal (in body frame)

For elevons, the force due to translational motion is given by:

FzT = -1 * rho * Ae * V^2 * cos(phi)^2 * sin(delta)

FxT = -1 * rho * Ae * V^2 * cos(phi)^2 * cos(delta)

Here,

 Ae: Elevon surface Area

 V: Net velocity of the vehicle

 delta: deflection angle of the elevon relative to the body

 phi: angle that the striking air makes with the elevon normal

phi = acos(|Vx| / ||V||) – delta

2) Forces due to rotational motion

 The aerodynamic forces on the wings due to rotational motion can be calculated

simply by change in momentum of the air stream after striking the wing.

Currently, only the resultant force/torque due to rotation along the z-axis only has

been considered. As this is the only dominant force out of the three, we focus on this

only.

This condition is similar to a stream of air hitting a flat plate perpendicularly. The

resultant total toruqe can be calculated by the change in momentum occurring, which

is given by:

Tz = -2 * rho * Awx * L^3 * abs(Wz) * Wz

Here,

L: The distance of the point of application of force on both wings with the central axis

of rotation.

Wz: Angular Velocity of the vehicle about the z-axis in the body frame

34

4.7 Further development plans

 The simulation model developed can now be used as a test bed for testing new

algorithms for dual-rotor VTOL UAV platforms. Our plan is to implement and test

conventional control schemes on this model. Once that is achieved, we intend to

implement Machine Learning Based control strategies, for which the development of

this test bed was absolutely necessary (as we cannot let the real model fail and crash

as many times as it wants!).

The plan is to use RNN based strategies to form a data-driven controller

without any pre mathematical modelling of the vehicle being fed to the controller.

The controller will have to figure out the optimal control strategy to go from point A

to point B while following the given policies and constraints (time and safety limits).

The scope of this approach is huge, as this opens a wide range of possibilities for

forming different algorithms for path planning, swarm behavior, etc.

Due to current time limitation, only the development of the simulation model

was completed as of the day of writing.

 35

CHAPTER 5 – Results and Conclusions

For the Mechanical design part, the MCAD model was made using SolidWorks. The

part files were exported in different formats to be used for analysis as well as for

development of the simulation model. Fabrication of the First prototype of the vehicle

had been completed before March, 2020.

Structural and flow analysis of the wings and motor mounts was performed and the

following conclusions were drawn:

For Structural Analysis of Motor Mounts:

• Maximum Stress (8.5716 MPa) < Y.S. (35.9 MPa) so our design is valid

according to stress considerations.

• Maximum Strain (3.0864e-04) < Theoretical Strain (3.7267e-03) hence, our

design is also valid according to strain considerations.

• Diameter Range: 2.6535mm <= D <= 5.269mm

For flow analysis of Wings:

• Drag Force = 0.0066998 N

• Lift Force = 0.006409952 N

• It is concluded that Lift and Drag force effects will be negligible as the length

of the aerofoil is small.

• Scaled Residuals of Continuity, X-Direction Velocity, Y-Direction Velocity, Z-

Direction Velocity increases in the starting, reaches a peak then decreases with

increase in the number of iterations.

• Lift coefficient first decreases then attains a minimum value then starts

increasing in an irregular manner.

• Drag coefficient decreases in an almost exponential manner.

36

The simulation model developed can now be used as a test bed for testing new

algorithms for dual-rotor VTOL UAV platforms. Our plan is to implement and test

conventional control schemes on this model. Once that is achieved, we intend to

implement Machine Learning Based control strategies, for which the development of

this test bed was absolutely necessary (as we cannot let the real model fail and crash

as many times as it wants!).

 The future plan for this project includes implementing and testing efficient

control schemes with an integrated transition behaviour. After that, swarm

behaviour of this class of UAV can be tested. Further mechanical improvements

include modifying the aerofoil design for higher payload capacities, with minimal

change in the form factor of the vehicle.

37

Appendix A: MATLAB code for BET calculations

%% Calculates Thrust/Torque vs RPM relation for a given propeller using Blade

Element Theory

%% the t & q variables at the end represent the second order polynomial

coefficients for the same

clear, clc

%chord length of blade assumed constant with radius (meters)

chord=0.02;

%pitch distance in meters.

pitch=0.0254 * 4.5;

%diameter of the propeller (meters)

dia=0.0254 * 10;

%tip radius

R=dia/2.0;

%thickness to chord ratio for propeller section (constant with radius)

tonc=0.12*chord;

%standard sea level atmosphere density (kg/m^3)

rho=1.225;

% 2 Bladed Propeller

B=2;

% use 10 blade segments (starting at 10% R (hub) to R)

xs=0.1*R;

xt=R;

rstep=(xt-xs)/10;

r1=[xs:rstep:xt];

%calculate results for a range of velocities from 1 to 60 m/s

V = 0.1;

rpm = 1000:1000:20000;

for i=1:length(rpm)

 RPM = rpm(i);

 n = RPM / 60.0;

 omega = 2.0 * pi * n;

 %initialise sums thrust (N) torque (Nm)

 thrust=0.0;

 torque=0.0;

 a_sum = 0.0;

 %loop over each blade element

 for j=1:size(r1,2)

 rad=r1(j);

 %calculate local blade element setting angle

 theta=atan(pitch/2/pi/rad);

 %calculate solidity

 sigma=2.0*chord/2.0/pi/rad;

 %guess initial values of inflow and swirl factor

 a=0.1;

 b=0.01;

 %set logical variable to control iteration

 finished=false;

 %set iteration count and check flag

 sum=1;

 itercheck=0;

38

while (~finished)

 %axial velocity

 V0=V*(1+a);

 %disk plane velocity

 V2=omega*rad*(1-b);

 %flow angle

 phi=atan2(V0,V2);

 %blade angle of attack

 alpha=theta-phi;

 % lift coefficient

 cl=6.2 * alpha;

 %drag coefficient

 cd=0.008-0.003*cl+0.01*cl*cl;

 %local velocity at blade

 Vlocal=sqrt(V0*V0+V2*V2);

 %thrust grading

 DtDr=0.5*rho*Vlocal*Vlocal*B*chord*(cl*cos(phi)-cd*sin(phi));

 %torque grading

 DqDr=0.5*rho*Vlocal*Vlocal*B*chord*rad*(cd*cos(phi)+cl*sin(phi));

 %momentum check on inflow and swirl factors

 tem1=DtDr/(4.0*pi*rad*rho*V*V*(1+a));

 tem2=DqDr/(4.0*pi*rad*rad*rad*rho*V*(1+a)*omega);

 %stabilise iteration

 anew=0.5*(a+tem1);

 bnew=0.5*(b+tem2);

 %check for convergence

 if (abs(anew-a)<1.0e-5)

 if (abs(bnew-b)<1.0e-5)

 finished=true;

 end

 end

 a=anew;

 b=bnew;

 %increment iteration count

 sum=sum+1;

 %check to see if iteration stuck

 if (sum>500)

 finished=true;

 itercheck=1;

 end

 end

 a_sum = a_sum + a;

 thrust=thrust+DtDr*rstep;

 torque=torque+DqDr*rstep;

 end

 A(i) = (a_sum) / sum;

 THRUST(i) = thrust;

 TORQUE(i) = torque;

end

A_poly = polyfit(rpm, A, 1)

t = polyfit(rpm, THRUST, 2)

q = polyfit(rpm, TORQUE, 2)

plot(rpm, THRUST, 'b')

figure

plot(rpm, TORQUE, 'r')

39

Appendix B: The actuator control Gazebo Plugin Code

#ifndef _TERN_PLUGIN_HH_

#define _TERN_PLUGIN_HH_

#include <gazebo/gazebo.hh>

#include <gazebo/physics/physics.hh>

#include <gazebo/transport/transport.hh>

#include <gazebo/msgs/msgs.hh>

#include <gazebo/common/Timer.hh>

#include <vector>

#include <thread>

#include "ros/ros.h"

#include "ros/callback_queue.h"

#include "ros/subscribe_options.h"

#include "std_msgs/Float32.h"

#include "std_msgs/Time.h"

#include "rosgraph_msgs/Clock.h"

#define MAX_SERVO_TRQ 10

namespace gazebo

{

 /// \brief A plugin to control a Velodyne sensor.

 class TernPlugin : public ModelPlugin

 {

 /// \brief A node use for ROS transport

 private: std::unique_ptr<ros::NodeHandle> rosNode;

 /// \brief A ROS subscriber

 private: ros::Subscriber rosSub;

 /// \brief A ROS callbackqueue that helps process messages

 private: ros::CallbackQueue rosQueue;

 /// \brief A thread the keeps running the rosQueue

 private: std::thread rosQueueThread;

 /// \brief A node used for transport

 private: transport::NodePtr node;

 /// \brief A subscriber to a named topic.

 private: transport::SubscriberPtr sub;

 /// \brief Pointer to the model.

 private: physics::ModelPtr model;

 // Pointer to the update event connection

 private: event::ConnectionPtr updateConnection;

40

private:

 float actuator_input[4];

 physics::Joint_V actuator_joint;

 /// \brief A PID controller for the joint.

 private: common::PID pid;

 float curr_time, prev_time;

 // vector<vector<float>> PID_c;

 float Kp[4], Kd[4], Ki[4];

 ros::Subscriber actuators_sub[4];

 ros::Subscriber timer;

 rosgraph_msgs::Clock time_var;

 /// \brief Constructor

 public: TernPlugin() {}

 /// \brief The load function is called by Gazebo when the plugin is

 /// inserted into simulation

 /// \param[in] _model A pointer to the model that this plugin is

 /// attached to.

 /// \param[in] _sdf A pointer to the plugin's SDF element.

 public: virtual void Load(physics::ModelPtr _model, sdf::ElementPtr _sdf)

{

 // Safety check

 if (_model->GetJointCount() == 0)

 {

 std::cerr << "Invalid joint count, tern plugin not loaded\n";

 return;

 }

 // PID constants for actuators (Kp, Kd, Ki)

 // PID_c = {{10.0, 1.0, 0.0},

 // {10.0, 1.0, 0.0},

 // {10.0, 1.0, 0.0},

 // {10.0, 1.0, 0.0}};

 for (int j = 0; j < 2; j++) {

 Kp[j] = 0.01;

 Kd[j] = 0.00001;

 Ki[j] = 0.0;

 actuator_input[j] = 0;

 }

 for (int j = 2; j < 4; j++) {

 Kp[j] = 30.0;

 Kd[j] = 1.0;

 Ki[j] = 0.0;

 actuator_input[j] = 0;

 }

 // Store the model pointer for convenience.

 this->model = _model;

41

// Get all the joints in the model as a Vector

 this -> actuator_joint = _model -> GetJoints();

 // Create the node

 this->node = transport::NodePtr(new transport::Node());

 #if GAZEBO_MAJOR_VERSION < 8

 this->node->Init(this->model->GetWorld()->GetName());

 #else

 this->node->Init(this->model->GetWorld()->Name());

 #endif

 if (!ros::isInitialized())

 {

 int argc = 0;

 char **argv = NULL;

 ros::init(argc, argv, "gazebo_client",

 ros::init_options::NoSigintHandler);

 }

 // Create our ROS node. This acts in a similar manner to

 // the Gazebo node

 this->rosNode.reset(new ros::NodeHandle("gazebo_client"));

 // Create a named topic, and subscribe to it.

 ros::SubscribeOptions solr;

 // Creating the subscriber topics to get input values from

 for (int i = 0; i < 4; i++) {

 solr = ros::SubscribeOptions::create<std_msgs::Float32>(

 "/" + this -> model -> GetName() + "/" + this ->

actuator_joint[i] -> GetName(),

 1,

 boost::bind(&TernPlugin::get_act_data, this, _1, i),

 ros::VoidPtr(), &this -> rosQueue);

 this -> actuators_sub[i] = this -> rosNode -> subscribe(solr);

 }

 solr = ros::SubscribeOptions::create<rosgraph_msgs::Clock>(

 "/clock",

 1,

 boost::bind(&TernPlugin::time_cb, this, _1),

 ros::VoidPtr(), &this -> rosQueue);

 this -> timer = this -> rosNode -> subscribe(solr);

 // Spin up the queue helper thread.

 this->rosQueueThread =

 std::thread(std::bind(&TernPlugin::QueueThread, this));

 this->updateConnection = event::Events::ConnectWorldUpdateBegin(

 std::bind(&TernPlugin::updateJointStates, this));

 this -> seq = 0;

 this -> err_fraction = 0;

 }

42

/// \brief ROS helper function that processes messages

 private: void QueueThread()

 {

 static const double timeout = 0.01;

 while (this->rosNode->ok())

 {

 this->rosQueue.callAvailable(ros::WallDuration(timeout));

 }

 }

 void get_act_data(const std_msgs::Float32::ConstPtr& msg, int i) {

 this -> actuator_input[i] = msg -> data;

 }

 void time_cb(const rosgraph_msgs::Clock::ConstPtr& msg) {

 time_var = *msg;

 }

 float target_rpm[2];

 float curr_error[4];

 float prev_error[4];

 float delta_t;

 float control_torque;

 float control_torque_tmp;

 float err_fraction;

 int seq;

 float get_control_torque_elevon(int id) {

 this -> control_torque_tmp = this -> Kp[id] * this -> curr_error[id]

+ this -> Kd[id] * (float)(this -> curr_error[id] - this -> prev_error[id]) /

this -> delta_t;

 if (this -> control_torque_tmp > MAX_SERVO_TRQ) {

 return MAX_SERVO_TRQ;

 } else if (this -> control_torque_tmp < -MAX_SERVO_TRQ) {

 return -MAX_SERVO_TRQ;

 } else {

 return this -> control_torque_tmp;

 }

 }

 float diff_val;

 void rotorControlRoutine(int id) {

 this -> diff_val = -1 * (this -> actuator_joint[id] -> GetVelocity(0)

- this -> actuator_input[id] * (2 * M_PI) / 60);

 this -> target_rpm[id] += diff_val / 10;

 // if (this -> target_rpm[id] < this -> actuator_input[id]) {

 // this -> target_rpm[id] += 10.0;

 // } else if (this -> target_rpm[id] > this -> actuator_input[id]) {

 // this -> target_rpm[id] -= 10.0;

 // }

 this -> curr_error[id] = -1 * (this -> actuator_joint[id] ->

GetVelocity(0) - this -> target_rpm[id] * (2 * M_PI) / 60);

 // std::cout << "Current Error: " << this -> curr_error[id] << "\n";

 // std::cout << "Current RPM: " << this -> actuator_joint[id] ->

GetVelocity(0) * 60 / (2 * M_PI) << std::endl;

 // std::cout << "Target RPM: " << this -> target_rpm[id] <<

std::endl;

43

this -> err_fraction = (this -> curr_error[id]) / this -> target_rpm[id];

 // std::cout << "Fractional Error: " << err_fraction << std::endl;

 if (abs(err_fraction) < 0.001) {

 return;

 }

 this -> delta_t = this -> curr_time - this -> prev_time;

 if (this -> delta_t == 0) {

 return;

 }

 // PD control

 // this -> control_torque = get_control_torque_elevon(id);

 this -> control_torque = this -> Kp[id] * this -> curr_error[id] +

this -> Kd[id] * (float)(this -> curr_error[id] - this -> prev_error[id]) /

this -> delta_t;

 // std::cout << "P: " << this -> Kp[id] * this -> curr_error[id] <<

std::endl;

 // std::cout << "D: " << this -> Kd[id] * (float)(this ->

curr_error[id] - this -> prev_error[id]) / this -> delta_t << std::endl;

 if (this -> control_torque > 10) {

 this -> control_torque = 10;

 } else if (this -> control_torque <= -10) {

 this -> control_torque = -10;

 }

 // std::cout << "Contorl Torque: " << this -> control_torque << "\n";

 this -> actuator_joint[id] -> SetForce(0, this -> control_torque);

 // this->actuator_joint[id]->SetForce(1, 5);

 this -> prev_error[id] = this -> curr_error[id];

 return;

 }

 void elevonControlRoutine(int id) {

 this -> curr_error[id] = -1 * (this -> actuator_joint[id] ->

Position() - this -> actuator_input[id]);

 // std::cout << "Current Error: " << this -> curr_error[id] << "\n";

 if (this -> curr_error[id] < 0.001 && this -> curr_error[id] > -

0.001) {

 return;

 }

 this -> delta_t = this -> curr_time - this -> prev_time;

 if (this -> delta_t == 0) {

 return;

 }

 // PD control

 this -> control_torque = get_control_torque_elevon(id);

 this -> actuator_joint[id] -> SetForce(0, this -> control_torque);

 this -> prev_error[id] = this -> curr_error[id];

 return;

 }

 public: void updateJointStates() {

 // std::cout << "Seq: " << seq++ << std::endl;

 this -> curr_time = time_var.clock.sec + (time_var.clock.nsec /

1000000000.0);

 rotorControlRoutine(0);

 rotorControlRoutine(1);

 elevonControlRoutine(2);

 elevonControlRoutine(3);

44

this -> prev_time = this -> curr_time;

 }

 };

 // Tell Gazebo about this plugin, so that Gazebo can call Load on this

plugin.

 GZ_REGISTER_MODEL_PLUGIN(TernPlugin)

}

#endif

45

Appendix C: The Aerodynamics model Gazebo Plugin

Code

#ifndef _TERN_AERO_PLUGIN_HH_

#define _TERN_AERO _PLUGIN_HH_

#include <gazebo/gazebo.hh>

#include <gazebo/physics/physics.hh>

#include <gazebo/transport/transport.hh>

#include <gazebo/msgs/msgs.hh>

#include <gazebo/common/Timer.hh>

#include <ignition/math.hh>

#include <vector>

#include <thread>

#include "ros/ros.h"

#include "ros/callback_queue.h"

#include "ros/subscribe_options.h"

#include "std_msgs/Float32.h"

#include "std_msgs/Time.h"

#include "rosgraph_msgs/Clock.h"

#define MAX_SERVO_TRQ 10

#define T2 1.2061e-7

#define T1 -4.1556e-7

#define T0 -1.9043e-6

#define Q2 1.3114e-9

#define Q1 -2.8595e-10

#define Q0 -2.3435e-8

#define D 0.254 // 0.0254 * 10"

#define pitch 0.127 // 0.0254 * 4.5"

#define rho 1.225 // air density in Kg/m^3

#define l 0.2145 // 0.629 / 2 - 0.10

// #define As(r) D^2 * (1 + a(r)) / (1 + 2 * a(r))

#define Verr 0.1

/* For Chosen Verr */

#define A1 0.00286

#define A0 2.9948

/* *************** */

#define As 2.06e-2 // D * 0.0811021

#define Ae 2.4e-2 // 0.0811021 * 0.199357 m^2

#define Awx 3.8e-2 // 0.20 * 0.1914711 m^2

#define Awy 8.177e-3 // 0.03 * 0.2725732 m^2

#define Awz 8.0e-3 // 2 * 0.02 * 0.20

namespace gazebo

{

 /// \brief A plugin to control a Velodyne sensor.

 class TernAeroPlugin : public ModelPlugin

 {

 /// \brief A node use for ROS transport

 private: std::unique_ptr<ros::NodeHandle> rosNode;

46

/// \brief A ROS subscriber

 private: ros::Subscriber rosSub;

 /// \brief A ROS callbackqueue that helps process messages

 private: ros::CallbackQueue rosQueue;

 /// \brief A thread the keeps running the rosQueue

 private: std::thread rosQueueThread;

 /// \brief A node used for transport

 private: transport::NodePtr node;

 /// \brief A subscriber to a named topic.

 private: transport::SubscriberPtr sub;

 /// \brief Pointer to the model.

 private: physics::ModelPtr model;

 // Pointer to the update event connection

 private: event::ConnectionPtr updateConnection;

 private:

 physics::Link_V links;

 physics::Joint_V joint;

 /// \brief A PID controller for the joint.

 private: common::PID pid;

 float curr_time, prev_time;

 ros::Subscriber actuators_sub[4];

 ros::Subscriber timer;

 rosgraph_msgs::Clock time_var;

 int seq;

 /// \brief Constructor

 public: TernAeroPlugin() {}

 /// \brief The load function is called by Gazebo when the plugin is

 /// inserted into simulation

 /// \param[in] _model A pointer to the model that this plugin is

 /// attached to.

 /// \param[in] _sdf A pointer to the plugin's SDF element.

 public: virtual void Load(physics::ModelPtr _model, sdf::ElementPtr _sdf)

{

 // Safety check

 if (_model->GetJointCount() == 0)

 {

 std::cerr << "Invalid joint count, tern plugin not loaded\n";

 return;

 }

 // Store the model pointer for convenience.

 this->model = _model;

47

// Get the joints and links of the model as a vector

 this -> links = _model -> GetLinks();

 this -> joint = _model -> GetJoints();

 for (int i = 0; i < this -> links.size(); i++) {

 std::cout << "Link: " << this -> links[i] -> GetName() << " at

index: " << i << std::endl;

 }

 // Create the node

 this->node = transport::NodePtr(new transport::Node());

 #if GAZEBO_MAJOR_VERSION < 8

 this->node->Init(this->model->GetWorld()->GetName());

 #else

 this->node->Init(this->model->GetWorld()->Name());

 #endif

 if (!ros::isInitialized())

 {

 int argc = 0;

 char **argv = NULL;

 ros::init(argc, argv, "gazebo_client",

 ros::init_options::NoSigintHandler);

 }

 // Create our ROS node. This acts in a similar manner to

 // the Gazebo node

 this->rosNode.reset(new ros::NodeHandle("gazebo_client"));

 // Create a named topic, and subscribe to it.

 ros::SubscribeOptions solr;

 solr = ros::SubscribeOptions::create<rosgraph_msgs::Clock>(

 "/clock",

 1,

 boost::bind(&TernAeroPlugin::time_cb, this, _1),

 ros::VoidPtr(), &this -> rosQueue);

 this -> timer = this -> rosNode -> subscribe(solr);

 // Spin up the queue helper thread.

 this->rosQueueThread =

 std::thread(std::bind(&TernAeroPlugin::QueueThread, this));

 this->updateConnection = event::Events::ConnectWorldUpdateBegin(

 std::bind(&TernAeroPlugin::updateJointStates, this));

 this -> seq = 0;

 }

 /// \brief ROS helper function that processes messages

 private: void QueueThread()

 {

 static const double timeout = 0.01;

 while (this->rosNode->ok())

 {

 this->rosQueue.callAvailable(ros::WallDuration(timeout));

 }

 }

48

void time_cb(const rosgraph_msgs::Clock::ConstPtr& msg) {

 time_var = *msg;

 }

 float omega, RPM;

 float thrust, torque;

 float Vcr;

 ignition::math::Vector3d vel;

 void setForceOnRotor(int id) {

 this -> omega = this -> joint[id] -> GetVelocity(0);

 this -> RPM = abs(this -> omega * 60 / (2.0 * M_PI));

 // std::cout << "RPM: " << this -> RPM << std::endl;

 if (abs(this -> RPM) <= 1000) {

 return;

 }

 this -> vel = this -> links[0] -> RelativeLinearVel();

 this -> Vcr = pitch * RPM / 60;

 // std::cout << "RPM: " << this -> RPM << std::endl;

 this -> thrust = (T2 * RPM * RPM + T1 * RPM + T0) * (1 - (vel.Z()) /

Vcr);

 this -> torque = (this -> omega < 0 ? -1 : 1) * (Q2 * RPM * RPM + Q1

* RPM + Q0) * (1 - (vel.Z()) / Vcr);

 // std::cout << "Applied Thrust: " << this -> thrust << std::endl;

 if (!isnan(this -> torque)) {

 std::cout << "Applied Torque: " << this -> torque << std::endl;

 }

 this -> links[2 + id] -> AddRelativeForce(ignition::math::Vector3d(0,

0, thrust));

 // std::cout << "Force on body: " << this -> links[0] ->

RelativeForce() << std::endl;

 this -> links[2 + id] ->

AddRelativeTorque(ignition::math::Vector3d(0, 0, torque));

 // std::cout << "Torque on body: " << this -> links[0] ->

RelativeTorque() << std::endl;

 }

 double FzR, FxR;

 double FzM, FxM;

 double Fx, Fz;

 double phi;

 double delta;

 double Vnet;

 double Vs;

 double a;

 void setForceOnElevon(int id, int r_id, int l_id) {

 this -> Fx = this -> FxM = this -> FxR = 0;

 this -> Fz = this -> FzM = this -> FzR = 0;

 this -> torque = 0;

 this -> omega = this -> RPM = this -> delta = this -> Vnet = this ->

Vs = this -> a = 0;

 this -> omega = this -> joint[r_id] -> GetVelocity(0);

 this -> delta = -1 * this -> joint[id] -> Position();

 this -> RPM = this -> omega * 60 / (2.0 * M_PI);

49

if (!isnan(this -> RPM)) {

 // std::cout << "RPM: " << this -> RPM << std::endl;

 }

 // std::cout << "Delta: " << this -> delta << std::endl;

 this -> vel = this -> links[0] -> RelativeLinearVel();

 this -> Vnet = this -> vel.Length();

 this -> a = A1 * RPM / (Vnet + Verr) + A0;

 this -> Vs = (this -> vel.Z() + Verr) * (1 + a);

 if (this -> RPM != 0) {

 this -> FzR = -1 * rho * As * (this -> Vs * this -> Vs) *

sin(this -> delta) * sin(this -> delta);

 this -> FxR = -1 * rho * As * (this -> Vs * this -> Vs) *

sin(this -> delta) * cos(this -> delta);

 }

 this -> phi = acos(this -> vel.X() / this -> Vnet) - this -> delta;

 this -> FzM = -1 * rho * Ae * (this -> Vnet * this -> Vnet) *

cos(this -> phi) * cos(this -> phi) * sin(this -> delta);

 this -> FxM = -1 * rho * Ae * (this -> Vnet * this -> Vnet) *

cos(this -> phi) * cos(this -> phi) * cos(this -> delta);

 this -> Fz = this -> FzR + this -> FzM;

 this -> Fx = this -> FxR + this -> FxM;

 this -> torque = -1 * 0.045 * (Fx * cos(this -> delta) + Fz *

sin(this -> delta));

 if (isnan(this -> Fx) || isnan(this -> Fz) || isnan(this -> torque))

{

 return;

 }

 // std::cout << "Slipstream Velocity: " << this -> Vs << std::endl;

 // std::cout << "Z Velocity: " << this -> vel.Z() << std::endl;

 // std::cout << "Z force: " << this -> Fz << std::endl;

 // std::cout << "X force: " << this -> Fx << std::endl;

 // std::cout << "Torque: " << this -> torque << std::endl;

 // this -> links[l_id] -> AddLinkForce(ignition::math::Vector3d(Fx,

0, Fz), ignition::math::Vector3d(0, 0, -0.045));

 this -> links[l_id] -> AddRelativeForce(ignition::math::Vector3d(this

-> Fx, 0, this -> Fz));

 this -> links[l_id] -> AddRelativeTorque(ignition::math::Vector3d(0,

torque, 0));

 // std::cout << "Force on Elevon " << id << ": " << this ->

links[l_id] -> RelativeForce() << std::endl;

 }

 float FbT[3];

 float TbR[3];

 float thetab[3];

 ignition::math::Vector3d body_omega;

 void setBodyForces() {

 this -> vel = this -> links[0] -> RelativeLinearVel();

 this -> FbT[0] = -1 * rho * 2 * Awx * abs(this -> vel.X()) * this ->

vel.X();

 this -> FbT[1] = -1 * rho * Awy * abs(this -> vel.Y()) * this ->

vel.Y();

 this -> FbT[2] = -1 * rho * 2 * Awz * abs(this -> vel.Z()) * this ->

vel.Z();

 this -> links[0] -> AddRelativeForce(ignition::math::Vector3d(FbT[0],

FbT[1], FbT[2]));

50

this -> body_omega = this -> links[0] -> RelativeAngularVel();

 // std::cout << "Body Angular Vel: " << this -> body_omega <<

std::endl;

 this -> TbR[3] = -2 * rho * Awx * l * l * l * abs(this ->

body_omega.Z()) * this -> body_omega.Z();

 this -> links[0] -> AddRelativeTorque(ignition::math::Vector3d(0, 0,

TbR[3]));

 }

 public: void updateJointStates() {

 seq++;

 if (seq < 2000) {

 return;

 }

 // std::cout << "Seq: " << seq++ << std::endl;

 this -> curr_time = time_var.clock.sec + (time_var.clock.nsec /

1000000000.0);

 setForceOnRotor(0);

 setForceOnRotor(1);

 setForceOnElevon(2, 0, 4);

 setForceOnElevon(3, 1, 5);

 setBodyForces();

 // setMotionForces();

 this -> prev_time = this -> curr_time;

 }

 };

 // Tell Gazebo about this plugin, so that Gazebo can call Load on this

plugin.

 GZ_REGISTER_MODEL_PLUGIN(TernAeroPlugin)

}

#endif

51

References:

1) https://www.altiuas.com/#

2) https://www.researchgate.net/publication/323396673_Design_and_Fabricati

on_of_Small_Vertical-Take-Off-Landing_Unmanned_Aerial_Vehicle

3) https://www.researchgate.net/publication/317932848_Design_and_implemen

tation_of_a_quadrotor_tail-sitter_VTOL_UAV

4) https://www.flyingmachinearena.ethz.ch/wp-content/uploads/ritzIEEE17.pdf

5) https://emaxmodel.com/media/wysiwyg/RS2205-2.jpg

6) http://staff.fit.ac.cy/eng.fm/classes/amee202/Homework%20Assignment%20(

Momentum%20Equation).pdf

7) http://www.aerodynamics4students.com/propulsion/blade-element-propeller-

theory.php

8) http://www.aerodynamics4students.com/propulsion/blade-element-propeller-

theory.php

9) Glauert H. The Elements of airfoil and airscrew theory. 2nd Edition.

(Cambridge, 1947)

 52

