
Multi-View 3D reconstruction using Convex
Optimization

Nimesh Khandelwal
Roll No: 20105284

Project Mode: mixed
nimesh20@iitk.ac.in

Abstract—Multi-View 3D reconstruction is an important re-
search problem that has been explored in great depth by many
research groups as an attempt to generate near accurate virtual
models of real objects/environments. The current state-of-the-art
system uses a technique know as bundle adjustment to correct the
final 3D points of the model. Other techniques include minimizing
the surface energy of the inaccurately reconstructed model. This
paper presents the study of one such technique. We use a zero-
level set in the distance field representation of the reconstructed
model to represent the surface of our model. This paper also
presents the theoretical study of the energy functional as well as
the algorithm used.

Index Terms—Convex Optimization, Computer Vision, 3D
reconstruction

I. INTRODUCTION

3D object/scene reconstruction using a monocular camera
is one of the fundamental problems of computer vision. It
consists of many sub-problems, like feature detection and
mapping follwed by tracking. To reconstruct the scene we need
to establish a local coordinate system, for which we need to
accurate camera pose as we move the camera. Hance, we need
to calculate the camera pose from the image sequence as well.
This is a part of the problems addressed by SLAM. It aims
to solve both these problems simultaneously. Realtime SLAM
has seen great progress recently. The initial work of [6] used
statistical approach (Extended Kalman Filter). The current
state-of-the-art systems use the geometric approach (Bundle
Adjustment). In this work the authors split the tracking and
mapping tasks into two different threads. This system is called
the Parallel Tracking and Mapping (PTAM). This program is
now not compatible with recenet versions of OpenCV. The
other sub-problem to address is the generation of depth maps
from the pair of stereo images. Authors of [7] provide an
accurate and robust method for this.

There are many open source libraries available for the
reconstruction task as well, Eg. OpenCV SFM, OpenMVG,
COLMAP, PMVS, MVE and many others. For the current
study, feature detection and matching, rectification of stereo
image planes, disparity map generation, and the depth maps
generation was done using the in-built functions provided by
the OpenCV library.

For solving the optimization problem, the recently intro-
duced first order primal-dual algorithm has been used [1].
This has an advantage of discretely minimizing the functional
without performing any form of approximation.

II. METHOD

A. 3D Points and Camera Pose Estimation

For the current study, the method similar to the one given
in [4] has been followed. In that, the authors have used the
PTAM for obtaining high quality poes estimates. In the current
implementation, however, we have written a custom tracking
stack using the OpenCV library. For feature detection, SIFT
descriptors have been used along with FLANN based KNN
matcher. That was followed by the Lowe’s distance ratio test
to weed out unfit matches. Using the keypoints generated
by the matching algorithm, the corresponding homography
matrices were generated for both the frames. The homography
matrices are used to transform image planes such that they
are in a binocular configuration. The advantage of using the
homography transform is that now one only has to look along
certain lines (Epipolar Lines) in order to match pixels in one
image to corresponding pixels in the another.

B. Depthmap Generation

The rectified images are used to create the disparity map
for the given stereo image pair. For this, the stereoSGBM
algorithm was used from the OpenCV library. After parameter
tuning, the disparity results were good enough to use them for
depth map calculation. For this, the traingulation algorithm
was used, that is implemented in the OpenCV reprojectim-
ageTo3D() function. This function gives the 3D coordinates
of each pixel in the disparity map given the disparity-to-depth
matrix of the current frame. This disparity-to-depth matrix is
formed using the intrinsic parameteres of the camera only.

As for the camera pose estimates, the current implementa-
tion uses pre-existing data for the camera pose for each image.
If that is not the case, then the Perspective N Point transform
can be used on the matched features to calculate the change in
camera pose. This is implemented in the OpenCV solvePnP()
function.

C. Depthmap Fusion

To represent the model in 3D space using the points
calculated by triangulation, we use the level set approach in
a volumetric grid to describe them. The surface is implicitly
represented as a zero-level set of the function u : Ω→ [−1, 1].

For this, a signed distance field is constructed from the 3D
points calculated via triangulation. The null iso-surface of this
field represents the surface of our reconstructed model. For

every 3D point, the voxel containing the 3D point is assigned
the value 0. Then for each voxel lying along the line-of-sight
from camera to the point, it is assigned a positive value (upto
+1) if it lies between the camera and the 3D point, and a
negative value (upto -1) if it lies behind the 3D point touching
the line-of-sight. This description is then used to run our
optimization algorithm on.

The primal formulation of the minimization problem can be
stated as:

min
u

{∫
Ω

|∇u|+ λ

N∑
i=1

∫
Ω

h(x, i)|u(x)− di|dx
}

The explaination and convexity analysis of this functional is
given in section IV. To solve this problem, we use the first-
order primal-dual algorithm introduced by Chambolle & Pock
[1]. For that, we first write the primal-dual formulation of the
original primal problem:

min
u

max
‖p‖∞≤1

{
−
∫

Ω

udiv(p) + λ

N∑
i=1

∫
Ω

h(x, i)|u(x)− di|dx
}

where p : Ω→ R3 is the dual variable.
The algorithm consists of the gradient descent/ascent steps

for u/p:

un+1 = proxhist(u
n − τ(−divpn))

pn+1 = proj‖p‖∞≤1(pn|+ σ∇(2un+1 − un))

where τ is the primal step and σ is the dual step size. The
convergence for this algorithm is shown in seciton IV.

The functions proxhist(v) and proj‖q‖∞≤1(q(x)) are de-
fined as:

proj‖q‖∞≤1(q(x)) =
q(x)

max{1, ‖q(x)‖}

proxhist(v(x))

= argmin
u

{‖u− v(x)‖2

2τ
+ λ

N∑
i=1

h(x, i)|u− di|
}

The simplification and definition of both the functions are
given in [1] & [4].

III. IMPLEMENTATION

The dataset used for testing
was the templeRing dataset from
https://vision.middlebury.edu/mview/data/.
It consists of 47 images of the model from difffernt positions
on a circle alongwith the camera intrinsic and extrinsic
parameters.

The simulation was written in Python 3.8 and image pro-
cessing tasks were done using OpenCV library. The GPU im-
plementation of the simulation would have took considerable
time therefore it was decided to run the code on CPU only.
The machine used for running the simulation is Dell G7 7588

Fig. 1. Flow chart for the simulation

with an 8th gen intel i7 CPU and 16GB of RAM. It has
a capable Nvidia GeForce 1060 MaxQ GPU with 6GB of
VRAM that will be useful in the future GPU implementation
of this simulation.

The flow chart for the whole procedure is given in Fig. 1.

IV. THEORETICAL ANALYSIS

A. Convexity of Surface Energy Functional

To obtain the final 3D model, depth map fusion is carried
out by minimizing a TV −L1 energy functional modified with
the histogram count of each bin i:

ETV−L1

(u) =

∫
Ω

{
|∇u|+ λ

N∑
i=1

∫
Ω

h(x, i)|u(x)− di|
}
dx

In this functional, the first term is the measures the total
variation of the function u (

∫
Ω
|∇u|dx =

∫
Ω
‖∇u‖2dx). The

resulting function u : Ω → R is the signed distance to the
fused model. It is used to minimize the area of the level sets
that define the model and thus it essentially remove noise
caused by outliers in the depth map.

The other term is the L1 term, that measures the l1 distance
of the solution to the individual distance field generated
continuously from the depth maps. The term h(x, i) denotes
the count of how often the value di occured in all the distance
fields generated till now at specific voxel x.

To establish the convexity of this functional, we use the
zeroth order criteria for establishing convexity of any given
function f:

f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

Let us define:

E(u1) =

∫
Ω

{
|∇u1|+ λ

N∑
i=1

∫
Ω

h(x, i)|u1(x)− di|
}
dx

E(u2) =

∫
Ω

{
|∇u2|+ λ

N∑
i=1

∫
Ω

h(x, i)|u2(x)− di|
}
dx

Now, applying the zeroth order criteria:

E(θu1 + (1− θ)u2) =

∫
Ω

{
|∇(θu1 + (1− θ)u2)|

+ λ

N∑
i=1

∫
Ω

h(x, i)|(θu1(x) + (1− θ)u2(x))− di|
}
dx

Taking the first total variation term to be E1 and the second
l1 term to be E2:

E1 =

∫
Ω

|∇(θu1 + (1− θ)u2)|

≤
∫

Ω

θ|∇u1|+ (1− θ)|∇u2|

E2 = λ

N∑
i=1

∫
Ω

h(x, i)|θu1(x) + (1− θ)u2(x)− di|

= λ

N∑
i=1

∫
Ω

h(x, i)|θu1(x) + (1− θ)u2(x)− θdi − (1− θ)di|

= λ

N∑
i=1

∫
Ω

h(x, i)|θ(u1(x)− di) + (1− θ)(u2(x)− di)|

≤ λ
N∑
i=1

∫
Ω

h(x, i)θ|u1(x)− di|

+

∫
Ω

h(x, i)(1− θ)|u2(x)− di|

Using the final results of E1 and E2 above, we can write:

E ≤ E1 + E2

E(θu1 + (1− θ)u2) ≤ θE(u1) + (1− θ)E(u2)

This establishes the convex nature of the surface energy
functional.

B. Convergence of the primal-dual algorithm

The convergence of the algorithm is established in the
original paper [1]. It is as follows:

Let us consider the general saddle point problem given as:

min
x∈X

max
y∈Y
〈Kx, y〉+G(x)− F ∗(y)

This is a primal-dula formulation of the non-linear primal
problem given as:

min
x∈X

F (Kx) +G(x)

The dual problem is written as:

max
y∈Y
−(G∗(−K∗y) + F ∗(y))

For our current total variational formulation:

F (Kx) =

∫
Ω

|∇u|dx

G(x) = λ
∑
i=1

N

∫
Ω

h(x, i)|u(x)− di|dx

The algorithm that we are going to analyze is mentioned
below:

Algorithm
• Initialization: Choose τ, σ > 0, θ ∈ [0, 1], (x0, y0) ∈
X × Y and set x̄0 = x0

• Iterations (n ≥ 0): Update xn, yn, x̄n as follows:

yn+1 = (I + σ∂F ∗)−1(yn + σKx̄n)

xn+1 = (I + τ∂G)−1(xn − τK∗yn+1)

x̄n+1 = xn+1 + θ(xn+1 − xn)

Let us define the primal-dual gap for the given general
problem as:

GB1×B2(x, y) = max
y′∈B2

〈y′,Kx〉+G(x)

− min
x′∈B1

〈y,Kx′〉 − F ∗(y) +G(x′)

Now, whenever the space defined by B1 × B2 contains a
saddle point (x̂, ŷ), we will have:

GB1×B2
≥ 0

The equality occurs only when (x, y) is a saddle point.
To prove that such a saddle point exists, we use the

following proof:
Rewriting the algirithm iterations in the general form:

yn+1 = (I + σ∂F ∗)−1(y + σKx̄)

xn+1 = (I + τ∂G)−1(xn − τK∗ȳ)

From these equations, we get:

∂F ∗(yn+1) 3 yn − yn+1

σ
+Kx̄

∂G(xn+1) 3 xn − xn+1

τ
−K∗ȳ

such that for any (x, y) ∈ X ×Y , the F ∗(y) and G(x) can
be bounded below:

F ∗(y) ≥ F ∗(yn+1) +

〈
yn − yn+1

σ
, y − yn+1

〉
+ 〈Kx̄, y − yn+1〉

G(x) ≥ G(xn+1) +

〈
xn − xn+1

τ
, x− xn+1

〉
− 〈K(x− xn+1), ȳ〉

Summing both these inequalities and rearranging, we get:

‖y − yn‖2

2σ
+
‖x− xn‖2

2τ
≥

[〈Kxn+1, y〉 − F ∗(y) +G(xn+1)]

− [〈Kx, yn+1〉 − F ∗(yn+1) +G(x)]

+
‖y − yn+1‖2

2σ
+
‖x− xn+1‖2

2τ

+
‖yn − yn+1‖2

2σ
+
‖xn − xn+1‖2

2τ
+ 〈K(xn+1 − x̄), yn+1 − y〉 − 〈K(xn+1 − x), yn+1 − ȳ〉

In the last expression, all the terms except the last line
are positive. Therefore, the last line is crucial in proving the
convergence of the algorithm. Choosing θ = 0, x̄ = xn and
ȳ = yn+1 (Arrow-Hurwicz method) in the last equation, we
get the following relation for any β ∈ (0, 1]:

〈K(xn+1 − x̄), yn+1 − y〉 − 〈K(xn+1 − x), yn+1 − ȳ〉
〈K(xn+1 − xn), yn+1 − y〉

≥ −β ‖x
n+1 − xn‖2

2τ
− τL2 ‖yn+1 − yn‖2

2β

≥ −β ‖x
n+1 − xn‖2

2τ
− τ L

2D2

2β

where D = diam(domF ∗) and L = ‖K‖.
Continuing this for N iterations, we get the following result:

N∑
n=1

[〈Kxn, y〉 − F ∗(y) +G(xn)]

− [〈Kx, yn〉 − F ∗(yn) +G(x)]

+
‖y − yN‖2

2σ
+
‖x− xN‖2

2τ

+

N∑
n=1

‖yn − yn−1‖2

2σ
+ (1− β)

N∑
n=1

‖xn − xn−1‖2

2τ

≤ ‖y − y
0‖2

2σ
+
‖x− x0‖2

2τ
+Nτ

L2D2

2β

Observe that the summation term and the norm terms in
the above equation are both non-negative. Letting xN =
(
∑N

n=1 x
n)/N and yN = (

∑N
n=1 y

n)/N , from the convexity
of G and F ∗, we can write:

[〈KxN , y〉 − F ∗(y) +G(xN)]− [〈Kx, yN 〉 − F ∗(yN) +G(x)]

≤ 1

N

(
‖y − y0‖2

2σ
+
‖x− x0‖2

2τ

)
+ τ

L2D2

2β

This shows that a convergence rate of O(1/N) can be
guaranteed within a certain error range. Also, if we choose
τ = 1/

√
N , we get a global O(1/

√
N) convergence of the

gap.
More details for other cases are given in [1].

V. SIMULATION RESULTS

Due to technical difficulties, I could not implement the 3D
point to distance field function, and therefore could not check
the final reconstruction result. The accompanying python files
generate the 3D world point of the model. For the optimization
algorithm, the code in the github repository for [5] was used.
It contains the implementations of both the original primal-
dual algorithm as well as the linesearch algorithm. Some of
the stereo disparity results and coresponding 3D point clouds
obtained are shown below:

(a) (b)

(c) (d)

Notice how the features of the temple are visible in the point
cloud (pillars, roof and stairs).

VI. RESULTS/COMMENTS

For the energy functional, the choice of a TV-regularizer
(total variational regularizer) poses a drawback for reconstruc-
tion since the regularization is independent of the surface
normal. To improve on this, more effective regularisers can
be implemented using anisotropic shape or by leveraging
semantics. There are many benefits of combining semantic
understanding with geometry knowledge. This is discussed in
more detal in [2].

For the solver algorithm, a more efficient linesearch method
can be used [5]. It requries update for only the dual (or primal)
variable. It also avoids additional matrix-vector multiplica-
tions. Since it employs lesser computations and has a faster

convergence, it is more suitable for use in a real time 3D
reconstruction system.

VII. CONCLUSION

In this paper, a convex optimization based method for 3D
reconstruction of an object using multi-view geometry was
presented. Some theoretical analysis for the energy functional
used was discussed and its convexity was established. The
proof of convergence of the used primal-dual algorithm was
stated. Since the current implementation is not as fast enough,
some improvements were suggested to mitigate this issue.
Future works for this topic include faster generation of depth
map using recent Machine Learning based techniques.

REFERENCES

[1] A. Chambolle and T. Pock. A first-order primal-dual algorithm for
convex problems with applications to imaging. J.Math. Imaging Vis.,
40:120–145, May 2011.v

[2] Richard, Audrey. From Point Clouds to High-Fidelity Models-Advanced
Methods for Image-Based 3D Reconstruction. Diss. ETH Zurich, 2021.

[3] C. Zach. Fast and high quality fusion of depth maps. Proc. 3DPVT,
2008.

[4] Graber, Gottfried, Thomas Pock, and Horst Bischof. ”Online 3d recon-
struction using convex optimization.” 2011 IEEE International Confer-
ence on Computer Vision Workshops (ICCV Workshops). IEEE, 2011.

[5] Malitsky, Yura, and Thomas Pock. ”A first-order primal-dual algorithm
with linesearch.” SIAM Journal on Optimization 28.1 (2018): 411-432.

[6] A. J. Davison. Real-time simultaneous localisation and mapping with a
single camera. In Proceedings of the Ninth IEEE International Con-
ference on Computer Vision - Volume 2, ICCV ’03, pages 1403–,
Washington, DC, USA, 2003. IEEE Computer Society

[7] C. Zach. Fast and high quality fusion of depth maps. Proc. 3DPVT,
2008.

[8] https://docs.opencv.org/

